[[Euclidean space]]
# Euclidean group
The **Euclidean group** $\mathrm{E}(n)$ is the [[isometry group]] of $n$-dimensional [[Euclidean space]] $\mathbb{E}^n$, #m/def/geo/affine
consisting of transformations that preserve Euclidean distance.
It is equivalent to the [[semidirect product]] of the appropriate [[real orthogonal group]] with the translation group
$$
\begin{align*}
\mathrm{E}(n) = \mathrm{O}(n) \rtimes \mathbb{R}^n
\end{align*}
$$
## Related groups
- The relativistic counterpart is the [[Poincaré group]]
#
---
#state/develop | #lang/en | #SemBr